吉同	高雄醫學大學]	109 學年度學生	轉系考試【普主	通化學】試題	第1頁,共2頁					
說明:一、請一律以「答案卷」作答,作答時不得使用鉛筆,違者該科答案卷不予計分; 限用黑色或藍色墨水的筆書寫。										
二、考生應在答案卷上規定範圍內作答,且不得書寫任何與答案無關之文字、符 時, 這本前到不子計八。										
	三、答案 試場	送日或有小了可送人与张為。	限,不得要求增补	浦;試題與答案卷,	必須繳回,不得攜出					
可使用工程型計算機										
第一部份 (請將答案填寫於答案卷表格內)單選題 (60%,4% each)										
1.	The most stable Lew	is structure of PF₃ has	lone pairs and _	bonding pairs.						
	(A) 9, 3 (E	3) 10, 3	(C) 11, 4	(D) 12, 4 (I	E) 11, 3					
2.	Which of the followi	ng substances will form	basic solutions in an aqu	ueous solution? NH ₄ Cl, C	u(NO ₃) ₂ , K ₂ CO ₃ , NaF, NaCl?					
	(A) NaF and NaCl only (B) NH ₄ Cl only (C) K_2CO_3 , NH4Cl , NaCl									
	(D) NH ₄ Cl, Cu(NO ₃)) ₂ (E) NaF and	K ₂ CO ₃							
3.	5. The aqueous solubility of O_2 44.8 mL per liter. What is the molarity of O_2 in a standard water solution when the O_2 is under its normal partial pressure in air in 0.20 atm?									
	(A)1x10 ⁻⁴ M	(B)2x10 ⁻⁴ M	(C)3x10 ⁻⁴ M	(D)4x10 ⁻⁴ M	(E)5x10 ⁻⁴ M					
4.	 A 2.5 g sample of groundwater was found to contain 5.0 ng of Cr⁶⁺, what is the concentration of Cr⁶⁺in parts per million? (52.0 u 									
	(A)2.0 ppm	(B)0.2 ppm	(C)0.02 ppm	(D)0.002 ppm	(E)0.0002 ppm					
5.	5. The number of nearest neighbors in a face centered cubic cell of identical atoms is:									
	(A)4	(B)8	(C)12	(D)16	(E)18					
 6. Use the Born-Haber cycle to calculate the standard enthalpy of formation (ΔH) for LiCl(s) given the following data: ΔH(sublimation) Li = 155.2 kJ/mol I₁ (Li) = 520 kJ/mol Bond energy (Cl–Cl) = 242.7 kJ/mol EA (Cl) = 349 kJ/mol Lattice energy (LiCl(s)) = 828 kJ/mol 										
	(A)440 kJ/mol	(B)220 kJ/mol	(C)380 kJ/mol	(D)-380 kJ/mol	(E)-440 kJ/mol					
7.	Which of the follow	ving reactions is associat	ed with the most positiv	e change in entropy?						
	$(A)C_{(s, graphite)} + H_2O_{(g)} -> CO_{(g)} + H_{2(g)} $ $(B) 2 CH_{4(g)} + O_{2(g)} -> 2 CH_3OH_{(I)}$									
8. A 0.1 L solution is made by dissolving 0.550g of CaCl ₂ (Mw: 110) in water, and completely dissociated into ion, osmotic pressure at 300 K?										
	(A)2.69 atm	(B)3.69 atm	(C)4.69 atm	(D)5.69 atm	(E)6.69 atm					
9.	A mixture of 8.00g o	f $O_{2(g)}$ and 8.00 g of CH ₄₍	_{g)} is placed in a 15.0L ves	sel at 27 °C, what is the pa	artial pressure of each gas and					

what is the total pressure in the vessel? ($\mathsf{P}_{\mathsf{O2}(g)},\mathsf{P}_{\mathsf{CH4}(g)}$, $\mathsf{P}_{\mathsf{total}}$)

(A) (0.41, 0.82, 1.23) (B) (0.82, 1.23, 2.05) (C) (0.25, 0.25, 0.5) (D) (0.5, 0.5, 1.0) (E) (0.5, 0.25, 0.75)

10. Which connection is electron affinity of o	correct (a) the first io xygen?	nization energy of oxyger	n, (b) the second ionizatio	n energy of oxygen (c) the					
I: $O_{(g)}$ + e^{-} → $O^{-}_{(g)}$, V: $O^{+}_{(g)}$ + e^{-} → $O^{2-}_{(g)}$	II: $O_{(g)}$ + 2e ⁻ → $O^{2^{-}}_{(g)}$, VI: $O_{(g)}$ → $O^{2^{+}}_{(g)}$ + 2e ⁻	III: $O_{(g)} \rightarrow O^{+}_{(g)}$ VII: $O^{+}_{(g)} \rightarrow O^{2}$	+ e ⁻ , IV: $O_{(g)} \rightarrow 0$ $2^{+}_{(g)} + e^{-}$	O ²⁺ (g) + 2e ⁻ ,					
(A) (a)=III, (b)=VII and ((c)= I	(B) (a)=IV, (b)=VII and (c)	= III (C) (a)=IV, (b)=VII and (c)= II					
(D) (a)=III, (b)=II and (c)= I		(E) (a)=VI, (b)=V and (c)= I							
11. The energy difference between staggered and eclipsed conformations of ethane is 12.0 kJ/mol, propane is 13.6 kJ/mol, what is the C-C bond energy in the eclipsed form in propane?									
(A)4.0 kJ/mol	(B)8.0 kJ/mol	(C)1.6 kJ/mol	(D)5.6 kJ/mol	(E)none of the above					
12. What element contributes to the 2019 Nobel Prize in Chemistry(A) Li(B) Na(C) Be(D) Mg(E)Al									
13. For which of the fol (A) $N_{2(g)}$ +3H _{2(g)} -> 2NH (D)3Fe _(s) +H ₂ O -> Fe ₃ O	lowing reaction does $I_{3(g)}$ $_{4(g)}+4H_{2(g)}$	K= Kp at 100 °C? (B) $CO_{(g)}+H_2O_{(g)} \rightarrow CO_{2(g)}+$ (E) $PCI_{5(g)} \rightarrow PCI_{3(g)} + CI_{2(g)}$	+H _{2(g)} (C) CaCO _{3(s}	_{s)} -> CaO _(s) +CO _{2(g)}					
14. [¹⁸ F]FDG (2-deoxy-2-[¹⁸ F]fluoroglucose)is used for PET imaging , it decays by and[¹⁸ F] will yield stable									
(A) alpha emission, ¹⁸ F (B)		beta emission, ¹⁹ F	(C) positron er	(C) positron emission, ¹⁸ O					
(D) photon emissic	n, ¹⁹ F (E)	neutron capture, ¹⁹ O.							
 15. Below structure is the precursor of the Remdesivir, an anti-viral drug. I. It is an aromatic compound, II. It has 13 σ bond. IV. It has 11 σ bond. V. It contains sp hybridization. V. It contains sp² hybridization 									
(A)Only I and IV. (B) Only		II and IV. (C) I,	II and III.	N					
(D)I, II, III and V	(E)I, II, I	/ and V							

第二部份 非選擇題(請將答案填寫於答案卷表格內)(40%)

- 16. Write balanced equations for each of the following processes and fill the missing element or the **missing** sub superscripts for all particles (**6pts**)
 - a. ²³⁸₉₂ U decays to generate ²³⁴₉₀Th
 - b. Electron capture of ${}^{201}_{80}$ Hg to produce ${}^{201}_{79}$ Au
- 17. Please draw the **completely** MO energy-level diagram of N₂. (6pts) and it's molecular electron configuration (2pts), HOMO and LUMO of N₂ (2pts). For N₂, N₂, N₂⁺ which has the highest bond energy(1pts) and which will show paramagnetism property (1pts)
- 18. Please write the electron configuration of first row transition metal of periodic table (10 pts)
- 19. For [Fe(H₂O)₆]²⁺, draw an energy diagram showing *d* orbital splitting, predict the number of unpaired electrons (6 pts)
- 20. Lactic acid ($HC_3H_5O_3$) can be accumulated in muscle tissue during exertion. Please calculate the value of K_a for this acid in a 0.100 M aqueous solution. (lactic acid is 3.7% dissociated in 0.100 M) (**6pts**)