高雄醫學大學 105 學年度學生轉系考試【普通化學】 命題紙

出題老師簽章:

高雄醫學大學 105 學年度學生轉系考試【普通化學】試題	第	1	頁,	共3	頁
說明:一、請一律以「答案卷」作答,作答時不得使用鉛筆,違者該科	答]	案卷	不予	计分	; ;
限用黑色或藍色墨水的筆書寫。					
二、考生應在答案卷上規定範圍內作答,且不得書寫任何與答	案無	【關-	之文	字、	符
號,違者該科不予計分。					
三、答案卷以每人一張為限,不得要求增補;試題與答案卷必	須線	2回	,不	得攜	,出
試場。					

*可使用工程型計算機

第一部分 單選題 (60%, 4% each)

- A 0.4987 g sample of a compound known to contain only carbon, hydrogen, and oxygen was burned in oxygen to yield 0.9267 g of CO₂ and 0.1897 g of H₂O. What is the empirical formula of the compound? (A.) CHO; (B.) C₂H₂O; (C.) C₃H₃O₂; (D.) C₆H₃O₂; (E.) C₃H₆O₂
- 2. A 0.307 g sample of an unknown triprotic acid is titrated to the third equivalence point using 35.2 mL of 0.106 M NaOH. Calculate the molar mass of the acid. (Na: 22.99 g/mol)
 (A.) 247 g/mol; (B.) 171 g/mol; (C.) 165 g/mol; (D.) 151 g/mol; (E.) 82.7 g/mol
- 3. The partial pressures of CH₄, N₂, and O₂ in a sample of gas were found to be 135 mm-Hg, 508 mm-Hg, and 571 mm-Hg, respectively. Calculate the mole fraction of nitrogen.
 (A.) 20.4; (B.) 0.470; (C.) 0.418; (D.) 0.751; (E.) 0.359
- 4. A 32.5 g piece of aluminum (which has a molar heat capacity of 24.03 J/°C·mol) is heated to 82.4°C and dropped into a calorimeter containing water (specific heat capacity of water is 4.18 J/g°C) initially at 22.3°C. The final temperature of the water is 24.2°C. Ignoring significant figures, calculate the mass of water in the calorimeter. (Al: 26.98 g/mol)
 (A.) 212 g; (B.) 5.72 kg; (C.) 6.42 g; (D) 1.68 kg; (E.) none of these
- **5.** Which of the following statements is (are) true?
 - I. An excited atom can return to its ground state by absorbing electromagnetic radiation.
 - II. The energy of an atom is increased when electromagnetic radiation is emitted from it.
 - III. The energy of electromagnetic radiation increases as its frequency increases.
 - IV. An electron in the n = 4 state in the hydrogen atom can go to the n = 2 state by emitting electromagnetic radiation at the appropriate frequency.

V. The frequency and wavelength of electromagnetic radiation are inversely proportional to each other. (A.) II, III, IV; (B.) III, V; (C.) I, II, III; (D.) III, IV, V; (E.) I, II, IV

6. Consider the following reaction:

 $A_2 + B_2 \rightarrow 2AB \qquad \Delta H = -365 \text{ kJ}$

The bond energy for A_2 is half the amount of AB. The bond energy of $B_2 = 447$ kJ/mol. What is the bond energy of A_2 ?

(A.) 812 kJ/mol; (B.) 630 kJ/mol; (C.) 271 kJ/mol; (D) -183 kJ/mol; (E) none of these

- 7. Consider the molecular orbital energy level diagrams for O₂ and NO. Which of the following is true?I. Both molecules are paramagnetic.
 - II. The bond strength of O_2 is greater than the bond strength of NO.
 - III. NO is an example of a homonuclear diatomic molecule.
 - IV. The ionization energy of NO is smaller than the ionization energy of NO⁺.
 - (A.) I only; (B.) I and II; (C.) I and IV; (D.) II and III; (E) I, II, and IV
- 8 If equal, rigid spheres are arranged in a simple cubic lattice in the usual way (i.e., in such a way that they touch each other), what fraction of the corresponding solid will be empty space?
 (A.) 0.52; (B.) 0.32; (C.) 0.68; (D.) 0.48; (E.) none of these
- 9 At a given temperature, you have a mixture of benzene (vapor pressure of pure benzene = 745 torr) and toluene (vapor pressure of pure toluene = 290 torr). The mole fraction of benzene in the vapor above the solution is 0.590. Assuming ideal behavior, calculate the mole fraction of toluene in the solution.
 (A.) 0.213; (B.) 0.778; (C.) 0.641; (D.) 0.359; (E.) 0.590
- **10.** A 1 L container originally holds 0.4 mol of N_2 , 0.1 mol of O_2 , and 0.08 mole of NO. If the volume of the container holding the equilibrium mixture of N_2 , O_2 , and NO is decreased to 0.5 L without changing the quantities of the gases present, how will their concentrations change?
 - (A.) The concentration of NO will increase; the concentrations of N_2 and O_2 will decrease.
 - (B.) The concentrations of N_2 and O_2 will increase; and the concentration of NO will decrease.
 - (C.) The concentrations of N₂, O₂, and NO will increase.
 - (D.) The concentrations of N_2 , O_2 , and NO will decrease.
 - (E.) There will be no change in the concentrations of N_2 , O_2 , and NO.
- **11.** In titrating 0.20 M hydrochloric acid, HCl, with 0.20 M NaOH at 25°C, the solution at the equivalence point is (Cl: 35.45 g/mol):

(A.) 0.20 M NaCl; (B.) very acidic; (C.) slightly acidic; (D.) 0.10 M HCl and 0.20 M NaOH; (E.) 0.10 M NaCl

12. Consider a solution containing the following cations: Na^+ , Hg^{2+} , Mn^{2+} , Al^{3+} and Ag^+ . Treatment of the solution with dilute HCl followed by saturation with H₂S results in formation of precipitate(s). Which ions still remain in solution ?

(A.) Ag^+ only; (B.) Na^+ , Hg^{2+} , Al^{3+} ; (C.) Ag^+ and Hg^{2+} ; (D.) Na^+ , Al^{3+} , and Mn^{2+} ; (E.) Na^+ only

13. A mixture of hydrogen and chlorine remains unreacted until it is exposed to ultraviolet light from a burning magnesium strip. Then the following reaction occurs very rapidly:

 $H_{2(g)} + Cl_{2(g)} \rightarrow 2HCl_{(g)} \Delta G = -45.54 \text{ kJ}; \Delta H = -44.12 \text{ kJ}; \Delta S = -4.76 \text{ J/K}$ Which of the following is consistent with this information?

- (A.) The reactants are thermodynamically more stable than the products.
- (B.) The reaction has a small equilibrium constant.
- (C.) The ultraviolet light raises the temperature of the system and makes the reaction more favorable.
- (D.) The negative value for ΔS slows down the reaction.
- (E.) The reaction is spontaneous, but the reactants are kinetically stable.
- **14.** The smallest amount of radioactive material that will support a self-sustained fission reaction is called the (A.) molar mass; (B.) moderator; (C.) supercritical mass; (D.) subcritical mass; (E.) critical mass
- **15.** Give the number of geometrical isomers for the octahedral compound [MA₂B₂C₂], where A, B, and C represent ligands.

(A.) 1; (B.) 2; (C.) 3; (D.) 5; (E.) none of these

第二部分 非選擇題 (40%,)

1. Consider the following hypothetical data collected in two studies of the reaction.

	2A	+	2B	\rightarrow	•	С	+ 2D)
ATTAD / CTAD	ΖA	+	2В	- 7	7	U	+ L	,

In experiment 1 $[\mathbf{R}]_{c} = 10.0 \mathrm{M}$			
In experiment 2 $[B]_0 = 20.0 \text{ M}$	Time (s)	Experiment 1	Experiment 2
$\frac{1}{2} = \frac{1}{2} = \frac{1}$		[A] (MOI/L)	[A] (MOI/L)
Rate = $-\Delta[A]/\Delta t$	0	1.0×10^{-2}	1.0×10^{-2}
Solve the value of the rate constant (<i>k</i>) for the	10	8.4 x 10 ⁻³	5.0×10^{-3}
reaction. Include units. (10%)	20	7.1 x 10 ⁻³	2.5 x 10 ⁻³
	30	6.0 x 10 ⁻³	1.3 x 10 ⁻³
	40	5.0 x 10 ⁻³	6.3 x 10 ⁻⁴

- 2. Calculate the equilibrium concentration of HPO_4^{2-} and PO_4^{3-} in a 1.00 M solution of H_3PO_4 where the K_{a1} , K_{a2} and K_{a3} for H_3PO_4 are 7.5x10⁻³, 6.2x10⁻⁸, and 4.8x10⁻¹³, respectively. Besides, what's the pH of this solution? (10%)
- 3. You have a concentration cell with Cu electrodes and $[Cu^{2+}] = 1.00 \text{ M}$ (right side) and $[Cu^{2+}] = 1.0 \times 10^{-4} \text{ M}$ (left side). Calculate the potential for this cell at 25°C. ($Cu^{2+} + 2e^- \rightarrow Cu$; $\epsilon^{\circ} = 0.34 \text{ V}$; 6%)
- **4.** Carbon tetrachloride, CCl₄, has a vapor pressure of 213 torr at 40°C and 836 torr at 80°C. What's the normal boiling point of CCl₄ (in K)? (8%; R: 8.314 J · K⁻¹mol⁻¹ = 0.082 L · atm · K⁻¹mol⁻¹)
- 5. Consider the following reaction at 25°C: $2NO_{2(g)} \leftrightarrow N_2O_{4(g)}$

The value of ΔH° and ΔS° are -58 kJ/mole and -176.6 J/K mol, respectively. Calculate the value of K at 100°C assuming ΔH° and ΔS° do not depend on the temperature. (6%; R: 8.314 J · K⁻¹mol⁻¹ = 0.082 L · atm · K⁻¹mol⁻¹)