高雄醫學大學 114 學年度學生轉系考試【普通化學】試題

說明:

- 一、「選擇題」請以答案卡劃卡作答,限用黑色2B軟心鉛筆劃記於答案卡上,劃線要粗黑、清晰, 不可出格,答案卡不得折損,修正作答請以軟性橡皮擦擦拭乾淨,且不得使用修正液(帶)修 正,未遵照正確作答方法而致無法判讀者,考生自行負責,不得提出異議。
- 二、考生應在答案卡上規定範圍內作答,且不得書寫任何與答案無關之文字、符號,違者該科不予 計分。
- 三、 答案卡每人各一張,不得要求增補;試題與答案卡必須繳回,不得攜出試場。

*可使用工程型計算機

Multiple Choice, choosing the one alternative that best completes the statement or answers the question (4 points each).

1. The density of osmium (the densest metal) is 22.57 g/cm³. If a 1.00-kg rectangular block of osmium has two dimensions of 4.00 cm × 4.0 cm, the third dimension of the block is _____ cm.

2. Which one of the following statements is **incorrect**?

- (A) Lead(IV) carbonate has its formulas of Pb(CO₃)₂.
- (B) The systematic name for NaH₂PO₄ is sodium dihydrogen phosphate.
- (C) A possible name for CuBr₂ is cuprous bromide.
- (D) The systematic name for AsF₅ is arsenic pentafluoride.
- (E) The systematic name for TO_3^{2-} is tellurite.
- 3. Consider the reaction of 19.0 g of zinc with excess silver nitrate to produce silver metal and zinc nitrite. The reaction is stopped before all the zinc metal has reacted and 29.0 g of solid metal is present. The mass percentage of silver in the 29.0-g mixture is ______ %.
- (A) 50.3 (B) 61.0 (C) 27.6 (D) 49.7 (E) 72.4

4. You are given an unknown gaseous binary compound, a compound consisting of two different elements. When 10.0 g of the compound is burned in excess oxygen, 16.3 g of water is produced. The compound has a density 1.38 times that of oxygen gas at the same conditions of temperature and pressure. The possible identity of the unknown compound is ______.

(A) $C_{3}H_{8}$ (B) BH₃ (C) HF (D) HCl (E) PH₃

5. Nitrogen content of organic compounds can be determined by the Dumas method. The compound in question is first reacted by passage over hot CuO(s): $Compound \xrightarrow{Hot} N_2(g) + CO_2(g) + H_2O(g)$ The product gas is then passed through a concentrated solution of KOH to remove the CO₂ and to leave the remaining gas containing N₂ saturated with water vapor. In a given experiment a 0.253-g sample of a compound produced 31.8 mL N₂ saturated with water vapor at 25 °C and 726 torr. The vapor pressure of water at 25 °C is 23.8 torr. The mass percent of nitrogen in the compound is thus _______ %. (A) 13.3 (B) 0.9 (C) 81.4 (D) 75.1 (E) 46.5

6. A balloon filled with 39.1 moles of helium gas has a volume of 876 L at 0.0°C and 1.00 atm pressure. The temperature of the balloon is increased to 38.0°C as it expands to a volume of 998 L while the pressure remaining constant. The ΔE for the helium in the balloon after the expansion is ______ kJ. The molar heat capacity for helium gas is 20.8 J/°C · mol.
(A) 18.5 (B) -43.2 (C) -18.5 (D) 30.9 (E) 43.2

高雄醫學大學 114 學年度學生轉系考試【普通化學】試題

- 7. The maximum wavelength of light capable of removing an electron for a hydrogen atom from the energy state characterized by n = 2 is ______ nm.
- (A) 4053 (B) 95.00 (C) 410.4 (D) 364.8 (E) 91.20

8. Which of the following statements is *true*?

- (A) An orbital is the same as a Bohr orbit.
- (B) The hydrogen atom doesn't have quantized energy levels.
- (C) The 2*s* orbital in the hydrogen atom is larger than the 3*s* orbital also in the hydrogen atom.
- (D) The Bohr model of the hydrogen atom has been found to be correct.
- (E) The third energy level has three sublevels, the s, p, and d sublevels.

9. Which one of the following ions has a noble gas electron configuration?

(A) Tl^+ (B) Fe^{2+} (C) Co^{3+} (D) Sc^{3+} (E) Mn^{2+}

10. Which of the following statements is *true*?

- (A) The ranking order of increasing electronegativity for the following element is $[Ar]4s^{1}3d^{5} < [Ar]4s^{2}3d^{10}4p^{3} < [Ne]3s^{2}3p^{3} < [Ne]3s^{2}3p^{5}$.
- (B) The order of decreasing size for the following ions is $Ca^{2+} > K^+ > Cl^-$.
- (C) The compound AsF₃ exhibits resonance.
- (D) SeCl₄ is a nonpolar compound with a tetrahedron structure.
- (E) KrF4 is a polar compound with a see-saw structure.
- 11. Which of the following statements is true?
- (A) The order of decreasing bond length for the following ions is $B_2^- > B_2 > B_2^+$.
- (B) XeCl₂ exhibits dsp^3 hybridization by the central atom, and is a linear and nonpolar molecule.
- (C) One of the sulfur-oxygen bonds in SO₂ is longer than the other(s).
- (D) SeO₂ exhibits sp^3 hybridization by the central atom.
- (E) ICl₅ exhibits at least one bond angle that is approximately 120° .
- 12. A mineral called spinel contains 37.9% aluminum, 17.1% magnesium, and 45.0% oxygen, by mass, and has a density 3.57 g/mL. The edge of the cubic unit cell is measured to be 809 pm. The unit cell thus has aluminum ions.

\mathcal{O}		0				1			
(A)	8	(B)	2	(C)	32	(D)	4	(E)	16

13. If the human eye has an osmotic pressure of 8.00 atm at 25°C, the concentration of solution particles in water will be mmol/L in order to provide an isotonic eyedrop solution, a solution with equal osmotic pressure.
(A) 620 (B) 4,110 (C) 0.33 (D) 327 (E) 79

14. For the reaction SO₂Cl₂(g) → SO₂(g) + Cl₂(g), sulfuryl chloride undergoes first-order decomposition at 320°C with a half-life of 8.75 h. If the initial pressure of SO₂Cl₂(g) is 791 torr and the decomposition occurs in a 1.25-L container, the molecules of SO₂Cl₂(g) after 12.5 h of the reaction is _____.
(A) 1.6 × 10²⁰ (B) 8.7 × 10²⁰ (C) 1.57 × 10²¹ (D) 2.9 × 10²¹ (E) 5.99 × 10²¹

15. A sample has 83.00% of the oxygen molecules dissociating to atomic oxygen at 5000 K and 1.000 atm. The pressure to give

 95% dissociation of the molecules at the same temperature is ______ atm.

 (A) 0.37
 (B) 0.89
 (C) 0.24
 (D) 0.50
 (E) 0.46

高雄醫學大學 114 學年度學生轉系考試【普通化學】試題

16. Th	e pH of a 1.0 × 1	0 ⁻⁷ -M solution of 1	NaOH in water	is	·				
(A)	7.7	(B) 6.3	(C)	7.0	(D)	6.8	(E)	7.2	
17. Ple (A) (B) (C) (D) (E)	ase recognize on HIO ₃ < HBrO ₃ HONH ₃ ⁺ < NH PH ₄ ⁺ < NH ₄ ⁺ ($H_3PO_4 < H_3PC_4$ F ₃ CCO ₂ H < F ₂	e of the following I4 ⁺ bond energies: N-I 0 ₃ CHCO2H < FCH2	groups that <i>co</i> H, 391 kJ/mol; CO2H < CH3C	<i>rrectly</i> plac P-H, 322 k. O ₂ H	es the species J/mol)	in order of	increasing ac	d strength.	
18. Ph cor aci	osphate buffers accentration ratio of K_{a1} , 7.5 >	are important in of H ₂ PO ₄ ⁻ to HPO ₄ $< 10^{-3}$; K_{a2} , 6.2 \times	regulating the $^{2-}$ in intracellul 10^{-8} ; K_{a3} , 4.8	e pH of int lar fluid at p × 10 ⁻¹³ .	racellular flui H = 7.15? The	ds at pH b e stepwise d	between 7.1 a issociation co	and 7.2. What is not an and 7.2. What is	s the horic
(A)	2.	(B) 3.	(C)	0.25.	(D)	0.5.	(E)	1.	
19. A s of t (A) (D)	olution saturated the salt, the K_{sp} v 5.60×10^{-5} 1.0×10^{-30}	with a salt of the t value for the salt is (B) 1. (E) 5. A(g) + 2B(g) = -	ype M ₃ X ₂ has 4×10^{-11} 8×10^{-27}	an osmatic p _ ·	pressure of 2.6 (C) 5.08 ×	54×10^{-2} atm 10^{-17}	$P_{C} = 0.100 s$	suming ideal beha	avior
20. For	been established	A(g) + 2B(g)	$P_{\rm C} = 0.040 \text{ atm}$	The ΔG°	value for this:	reaction at 2	$^{-}FC = 0.100 $ 25°C is	kJ/mol.	num
(A)	74.4	(B) 4.1	(C)	-14	(D)	-4.1	(E)	-74.4	
21. Wl eva	nich one of the a	following stateme ated vessel?	nts <i>correctly</i> o	lescribes the	e process who	en liquid wa	ater at 25°C	is introduced int	o an
(A)	ΔH is negative.	(B)	(B) ΔS is negative.		((C) ΔT_{water} will be positive.			
(D)	ΔS_{surr} is negative	/e. (E)	(E) ΔS_{univ} is positive						
22. Wł (A)	nat mass of potas 25 g	sium metal is prod (B) 16 g	luced when mo	olten KF is e 4.9 g	lectrolyzed b	y current of 29.2 g	10.0 A for tw (E)	o hours? 71 g	
23. The	e following radio	bactive decay $\frac{^{68}}{^{31}}$ Ga	$\mathbf{a} + {}^{0}_{-1}\mathbf{e} \rightarrow {}^{68}_{30}\mathbf{Z}$	ⁿ is a nucle	ar reaction of				
(A) (D)	β particle prod electron captur	uction (B) re (E)	γ ray produc α particle pr	etion roduction	(C	c) positro	on production		
24. Cons Co(en) 3^3	sider the followin ³⁺ , $K = 2.0 \times 10^{47}$	ng data: $Co^{3+} + e^{-}$ where en = ethyle	\rightarrow Co ²⁺ , E° =	= $1.82 \text{ V}; \text{ Contexp}$ The E° for the the second secon	$e^{2^+} + 3en \rightarrow$ e half reaction	$Co(en)_{3^{2+}}, K$ the Co(en)_{3^{3+}}	$K = 1.5 \times 10^{12}$ + e- \rightarrow Co(e	$; Co^{3+} + 3en \rightarrow$ n) 3^{2+} is	_ V.
(A)	-0.26	(B) 0.66	(C)	2.71	(D)	1.56	(E)	-0.97	
25. Wh the	ten heat is added correct algebraid	to proteins, the hy c signs of ΔH and	vdrogen bondir ΔS for the den	in the sec aturation pro	ondary struction ondary (ure is disrup	ted. Which of	f the followings g	gives

(A) $\Delta H = -$ and $\Delta S = -$ (B) $\Delta H = +$ and $\Delta S = +$ (C) $\Delta H = +$ and $\Delta S = -$ (D) $\Delta H = -$ and $\Delta S = +$ (E) None of these