說明:

- 「選擇題」請以答案卡劃卡作答,限用黑色2B軟心鉛筆劃記於答案卡上,劃線要粗黑、清晰, 不可出格,答案卡不得折損,修正作答請以軟性橡皮擦擦拭乾淨,且不得使用修正液(帶) 修正,未遵照正確作答方法而致無法判讀者,考生自行負責,不得提出異議。
- 二、 考生應在答案卡上規定範圍內作答,且不得書寫任何與答案無關之文字、符號,違者該科不 予計分。
- 三、 答案卡每人各一張,不得要求增補;試題與答案卡必須繳回,不得攜出試場。

選擇題 50 題 (每題 2 分, 共 100 分)

1.	Which o	of the following describes the difference between two isotopes of the same element?
	(A)	They have a different atomic number.

- (B) They have one more proton.
- (C) They have one more electron.
- (D) They have a different number of neutrons.

2.	The property of	f water that a	llows hy	drogen	bonds	s to f	orm	between	water mo	lecul	es i	s primari	ly d	lue t	0:
	(A) water	c overall not	nolar na	tura											

- water's overall nonpolar nature.
- (B) the equal sharing of electrons between oxygen and hydrogen.
- (C) the polar covalent bonds between oxygen and hydrogen atoms.
- (D) water being a good solvent for hydrophobic substances.

3. If the pl	H of a solution decreases from 7 to	o 4, it means t	the concentration of hydrogen ions (H ⁺) has:
(A)	decreased by a factor of 3.	(B)	decreased by a factor of 1000.
(C)	increased by a factor of 3.	(D)	increased by a factor of 1000.

4. Which of the following is defined as the study of carbon compounds?

(A) Biochemistry Organic chemistry (C) Physical chemistry Inorganic chemistry

5. A single polypeptide chain can have all of the following levels of structure EXCEPT:

(A) Primary structure (B) Secondary structure (C) Tertiary structure (D) Quaternary structure

6. Which of the following is present in a prokaryotic cell?

(A) Mitochondrion (B) Ribosome (C) Nuclear envelope (D) Chloroplast

7. For a resting neuron, which of the following is true regarding ion distribution and membrane potential?

- (A) The concentration of Na⁺ is higher inside the cell, and the membrane potential is positive.
- (B) The concentration of K^+ is higher outside the cell, and the membrane potential is positive.
- (C) The concentration of Na⁺ is higher outside the cell, and the inside is negatively charged relative to the outside.

(C)

(C)

Lipids

Osmosis

(D)

(D)

Nucleic acids

Cotransport

(D) The concentration of K^+ is higher outside the cell, and the inside is positively charged relative to the outside.

8. Which of the following classes of large biological molecules does NOT consist of polymers?

Proteins

9. Which of the following processes involves the net movement of water across a selectively permeable membrane?

Facilitated diffusion

(B)

(B)

(A) Carbohydrates

(A) Active transport

10. To stud	ly the process of pro	tein trans	slation from mR	RNA, which ce	ellular component	would be m	ost enrich	ed in the final
pellet a	after cell fractionatio	n?						
(A)	Nuclei		(B)	Mitochono	dria			
(C)	Pieces of plasma m	embrane	s (D)	Ribosome	S			
	er a metabolic pathy	-	_		Y, and Y is conve	erted to Z. I	f the enzy	me converting X to
	hibited by the accum		of Z, this is an e	_				
(A)	Allosteric activatio		(B)	-	ve inhibition.			
(C)	Noncompetitive in	hibition.	(D)	Feedback	inhibition.			
12. An enz	syme is added to a so	lution w	here its substrat	te and product	are in equilibrium	. What will	occur?	
(A)	Additional substrat	e will be	formed.					
(B)	The reaction will c	hange fro	om endergonic t	to exergonic.				
(C)	The free energy of	the syste	m will change.					
(D)	Nothing; the reaction	on will st	ay at equilibriu	ım.				
13. What p	percentage of the hur	nan geno	me codes for pr	roteins or give	s rise to rRNAs or	tRNAs?		
(A)	1.5%	(B)	5%	(C)	20%	(D)	75%	
14. The im	mediate energy sour	ce that d	irectly drives A	TP synthesis b	y ATP synthase du	aring oxidat	ive phospl	horylation is the:
(A)	oxidation of glucos		•	•		C		•
(B)	flow of electrons d	own the	electron transpo	ort chain.				
(C)	H+ concentration g		_		ATP synthase.			
(D)	transfer of phospha							
15. How d	o transposons and re	trotransp	osons differ in	their moveme	nt mechanisms wi	thin the gen	ome?	
(A)	Transposons move	via an R	NA intermediat	e, while retrot	ransposons move	via a DNA i	ntermedia	ite.
(B)	Transposons are les move via a DNA ir	_		ia an RNA inte	ermediate, while re	etrotranspos	ons are m	ore prevalent and
(C)	Transposons move intermediate.	via a DN	JA intermediate	, while retrotra	ansposons are moi	re prevalent	and move	via an RNA
(D)	Both transposons a	nd retrot	ransposons mov	ve via a DNA	intermediate, but o	only retrotra	nsposons	create new copies.
16. Which	mechanism of evolu	tion cons	sistently causes	adaptive evol	ution?			
(A)	Genetic drift	(B)	Gene flow	(C)	Natural selection	on (D)	Muta	tion
17. Which	of the following is t	he prima	ry role of the C	alvin cycle in	photosynthesis?			
(A)	To produce ATP an			•				
(B)	To capture light en							
(C)	To split water and a		kvgen.					

18. A water-soluble hormone typically acts on a target cell by:

- (A) binding to a receptor inside the cell to alter gene expression.
- (B) binding to a cell-surface receptor to trigger an intracellular signal transduction pathway.
- (C) diffusing across the plasma membrane to directly activate enzymes.

(D) To use chemical energy (ATP and NADPH) to reduce CO₂ to sugar.

(D) being converted into a lipid-soluble form before entering the cell.

19.	Differe	ent species of fruit fl	ies that l	live in the same	parts of	the Hav	waiian Islands have	distinct, ela	aborate courtship rituals.
	What t	ype of reproductive	isolation	n does this repre	sent?				
	(A)	Habitat isolation	(B)	Temporal isol	lation	(C)	Behavioral isolati	ion (D)	Gametic isolation
20.	B is 28	A, B, and C are loca % and that between osome is most likely	A and C	c is 12%. Which					n frequency between A and these genes on the
	(A)	The order is A-B-C		(B)	The	order i	s A-C-B.		
	(C)	The order is B-A-C		(D)			cannot be determined	d from this	data alone.
21.	_	_	hase of	the cell cycle ha	ıs a DNA	\ conte	nt of 'x', what would	l be the DN	A content of the same cell
		phase of meiosis I?							
	(A)	0.25x	(B)	0.5x		(C)	X	(D)	2x
22.		-			=	s ago) d	luring which large for	orms of ma	ny present-day animal
		irst appear in the fos							
	(A)	The Permian extino	ction	(B)			rian explosion		
	(C)	The Mesozoic era		(D)) The	coloniz	zation of land		
23.	. How m	night an error during	meiosis	lead to polyplo	idy in pl	ants?			
	(A)	Failure of homolog	gous chr	omosomes to se	parate d	uring m	neiosis I, leading to	diploid gan	netes.
	(B)						resulting in gametes		chromosomes.
	(C)	_				_	ombinant chromoso	omes.	
	(D)	Nondisjunction in	mitosis	during gamete f	ormation	in the	diploid organism.		
24.	. A popu	ılation has an allele '	a' with a	frequency of 0	.45. If th	e popu	lation is in Hardy-W	Veinberg eq	uilibrium, what is the
		ed frequency of the l					•	0 1	
	(A)	0.2025	(B)	0.3025		(C)	0.4950	(D)	0.5500
25.	Accord	ling to the principle	of maxi	num parsimony	, when c	onside	ring multiple phylog	genetic hypo	otheses, which explanation
	should	systematists investig	gate firs	t?					
	(A)	The most complex	explana	tion consistent	with all l	known	facts.		
	(B)	The explanation th	at incorp	porates the most	recently	discov	vered genetic mutati	ons.	
	(C)	The simplest expla	nation t	hat is consistent	with the	facts.			
	(D)	The explanation th	at best a	ligns with previ	ously es	tablishe	ed taxonomic classif	fications.	
26.	. Two or	ganisms, with genot	ypes Bb	DD and BBDd,	are mate	ed. Ass	uming independent	assortment	of the B/b and D/d genes,
	what is	the probability of o	btaining	g an offspring w	ith the go	enotype	BbDd?		
	(A)	1/16	(B)	1/8		(C)	1/4	(D)	1/2
27.	Which	of the following cha	ıracteris	tics, structures,	or proces	sses is	common to both bac	eteria and v	iruses?
	(A)	Metabolism			(B)	Rib	osomes		
	(C)	Genetic material co	omposed	d of nucleic acid	(D)	Cel	division		
28.	Which	type of sensory rece	ptor det	ects physical de	formatic	n in th	e body's environmer	nt associate	d with pressure, touch,
		, motion, or sound?	•	- ·			-		-
	(A)	Chemoreceptor			(B)	Elec	etromagnetic recepto	or	
	(C)	Nociceptor			(D)	Med	chanoreceptor		

- 29. Which of the following describes the ploidy and state of a fungal cell in the heterokaryotic stage?
 - (A) Haploid (n), with a single nucleus.
 - (B) Diploid (2n), formed after karyogamy.
 - (C) Dikaryotic (n + n), containing haploid nuclei from two parents.
 - (D) Polyploid, with multiple sets of chromosomes from a single parent.
- 30. Imagine you want to study a human crystallin protein. To obtain a sufficient amount of this protein, you decide to clone its gene. Assuming you know the gene sequence, which approach would allow you to produce the protein in a suitable system like bacteria?
 - (A) Isolate lens cells, extract genomic DNA, and insert the entire gene directly into a bacterial expression vector.
 - (B) Isolate lens cells, extract mRNA, use reverse transcriptase to make cDNA, and insert the cDNA into a bacterial expression vector.
 - (C) Directly synthesize the protein from its known amino acid sequence using a chemical synthesizer.
 - (D) Use PCR to amplify the gene from a brain cell and insert it into a eukaryotic yeast expression vector.
- 31. Which statement accurately distinguishes Ulva from Caulerpa regarding their multicellular organization?
 - (A) Ulva is a colonial protist, while Caulerpa is a true multicellular alga with specialized tissues.
 - (B) Ulva forms true multicellular bodies through cell division and differentiation, whereas Caulerpa achieves large size via repeated nuclear division without cytoplasmic division, making it not truly multicellular.
 - (C) Caulerpa exhibits alternation of generations, while Ulva only has a single-celled haploid stage.
 - (D) Both are truly multicellular, but Ulva has a simpler organizational plan compared to Caulerpa's complex thallus.
- 32. All chordates, at some point during their life cycle, are characterized by which of the following derived traits?
 - (A) Notochord, dorsal hollow nerve cord, pharyngeal slits or clefts, and muscular post-anal tail.
 - (B) Jaws, mineralized skeleton, lungs, and four limbs.
 - (C) Vertebrae, cranium, a two-chambered heart, and paired fins.
 - (D) Hair, mammary glands, endothermy, and a highly developed brain.
- 33. Put the following milestones in animal evolution in order from oldest to most recent: (a) origin of mammals, (b) earliest evidence of terrestrial arthropods, (c) Ediacaran fauna, (d) extinction of large, nonflying dinosaurs.
 - (A) c, b, a, d
- (B) a, b, c, d
- (C) d, c, b, a
- (D) c, a, b, d
- 34. The ability of the mammalian kidney to produce urine that is much more concentrated than blood is primarily due to:
 - (A) The active transport of water in the collecting duct.
 - (B) The presence of a short loop of Henle in cortical nephrons.
 - (C) The establishment and maintenance of a steep osmolarity gradient in the renal medulla by the loops of Henle of juxtamedullary nephrons.
 - (D) The selective reabsorption of all solutes, including urea, in the proximal tubule.
- 35. What are the four main stages of food processing in animals, in order?
 - (A) Digestion, ingestion, absorption, elimination
 - (B) Ingestion, digestion, absorption, elimination
 - (C) Ingestion, absorption, digestion, elimination
 - (D) Digestion, absorption, ingestion, elimination

36. Given that sponges lack true tissues and organs, how do they accomplish vital functions such as gas exchange, nutrient

transpo	ort, and waste disposal	?							
(A)	They possess a gastr	ovascu	lar cavity tha	at han	dles all interr	nal transport.			
(B)	Through specialized	, but ru	dimentary, c	ircula	tory and excr	retory systems.			
(C)	By simple diffusion	across	the surfaces	of the	ir cells, whic	h are in direct cont	act with the	water environme	nt.
(D)	They rely on symbio	tic bac	teria to perfo	orm th	ese functions	for them.			
37. In a clo	osed circulatory syster	n, whe	re does chem	nical e	exchange occi	ur between the blo	od and inters	titial fluid?	
(A)	Arteries	(B)	Veins		(C)	Capillaries	(D)	Ventricles	
38. If a pla	nt detects increased le	evels of	light reflect	ed fro	om the leaves	of encroaching ne	ighbors, it ty	pically responds	with stem
elonga	tion, production of ere	ct leav	es, and redu	ced la	teral branchin	ng. How do these r	esponses hel	p the plant comp	ete?
(A)	They allow the plant	to stor	e more wate	r in it	s stems.				
(B)	They enhance the pla	ant's ab	ility to prod	uce de	efensive chen	nicals.			
(C)	They enable the plan	it to gro	ow taller and	l captu	are more ligh	t, reducing shading	g from compo	etitors.	
(D)	They promote earlies	r flowe	ring and see	d proc	luction.				
39. Which	type of immunity is a	ctive in	nmediately ι	ıpon e	exposure to a	pathogen and is th	e same whet	her or not the pat	hogen
has bee	en encountered previo	usly?							
(A)	Adaptive immunity		((B)	Acquired in	nmunity			
(C)	Innate immunity		((D)	Humoral in	nmunity			
40. If a cor	mplete ring of bark is	remove	ed from arou	nd a t	ree trunk (a to	echnique called gir	dling), the tr	ee will die, but ty	pically
slowly	(in weeks) rather than	quick!	ly (in days).	Whic	h of the follo	wing best explains	this observe	d timeframe?	
(A)	Girdling only disrup	ts the x	ylem, and th	ne tree	's roots can s	tore enough water	to survive fo	or a few days.	
(B)	Girdling severs the p	hloem,	cutting off	sugar	transport to t	he roots, which lea	ds to root sta	arvation and	
	eventual death, a pro	cess th	at takes wee	ks.					
(C)	Girdling directly kill carbohydrates are de			s in th	e trunk, but tl	ne leaves can conti	nue photosy	nthesis until store	ed
(D)	The tree can regener	•		nin da	ys, thus preve	enting rapid death,	but the energ	gy cost is high.	
41. Which	type of plant supplem	ents its	mineral nut	trition	by digesting	animals?			
(A)	Epiphytes		((B)	Parasitic pla	ants			
(C)	Carnivorous plants		((D)	Nitrogen-fix	xing plants			
42. In man	nmalian circulation, or	xygen-1	rich blood re	turns	from the lung	gs to the heart via t	he:		
(A)	Pulmonary arteries	(B)) Aorta		(C)	Venae cavae	(D)	Pulmonary vein	1S
43. A plant	has a double mutatio	n: ctr (constitutive 1	triple	response, me	aning it always sho	ows the triple	e response regard	less of
ethyler	ne) and ein (ethylene i	nsensit	ive, meaning	g it car	nnot respond	to ethylene). What	would be it	s triple-response	
phenot	ype?								
(A)	It would display a no	ormal tı	riple respons	se, as t	the mutations	compensate for ea	ch other.		
(B)	It would not display	the trip	le response,	as the	e ein mutation	n makes it insensiti	ive to ethyle	ne.	
(C)	It would constitutive	ly disp	lay the triple	e respo	onse, because	the ctr mutation is	s dominant.		

(D) Its phenotype would be intermediate between a wild-type plant and a ctr mutant.

44. If a hu	man female begins taking	estradiol and proge	est	erone immedi	ately after the	start of a	new 1	menst	rual cycle, how will		
ovulati	on be affected?										
(A)	Ovulation will be stimula	ated early in the cy	cle	e.							
(B)	Ovulation will be delaye	d or inhibited.									
(C)	Ovulation will occur nor	mally, but fertiliza	tio	n will be prev	vented.						
(D)	Ovulation will become in	regular, but not ne	ce	ssarily inhibit	ed.						
45. Which	of the following is a direc	t consequence of b	oio	logical magni	fication?						
(A)	Ecosystems with higher	primary productivi	ty	support large	r populations o	of herbivo	res.				
(B)	Toxic chemicals, such as	PCBs, become mo	ore	concentrated	l in organisms	at higher t	rophi	ic leve	els.		
(C)	The total biomass decreases as you move up trophic levels in an ecosystem.										
(D)	Species with narrow hab	itat requirements a	re	more vulnera	ble to extinction	on.					
46. Rumin	ant animals, such as cows	, have specialized o	dig	estive system	s that allow th	em to obta	ain siş	gnific	ant nutrients from		
cellulo	se-rich plant material. Wh	ich of the followin	g ł	est describes	the key adapta	ation respo	onsibl	le for	this ability?		
(A)	They have an extended small intestine for increased absorption surface area.										
(B)	Their stomach has four chambers, with mutualistic microorganisms digesting cellulose in the rumen and reticulum.										
(C)	They produce unique enzymes in their abomasum that directly break down cellulose.										
(D)	They re-ingest their fece	s to re-process und	lige	ested plant ma	atter, similar to	copropha	igous	anim	als.		
47. Which	of the following is a less t	toxic nitrogenous v	vas	ste product th	at mammals ar	nd most ac	lult aı	mphib	oians convert		
ammor	nia into, requiring a moder	ate amount of water	er i	for excretion?	•						
(A)	Ammonia (B)) Urea		(C)	Uric acid		(D)	Cre	eatinine		
48. During	the rising phase of an act	ion potential, what	is	the primary e	event that cause	es the rapi	d dep	olariz	zation of the neuron's		
(A)	Outflow of potassium io	$ns(K^+)$									
(B)	Inflow of chloride ions (C1 ⁻)									
(C)	Rapid opening of voltage	e-gated sodium cha	anr	nels (Na ⁺) allo	owing Na ⁺ to d	iffuse into	the c	cell			
(D)	Active transport of sodiu	m and potassium i	on	s by the Na ⁺ /	K ⁺ pump						
49. The pro	oduction of offspring with	out the fusion of g	am	netes is known	ı as:						
(A)	Sexual reproduction	(B)		Parthenogen	esis						
(C)	Hermaphroditism	(D)		Asexual rep	roduction						
	s the process by which an tion of thousands of cells				which lympho	cyte will d	livide	to pr	oduce a clonal		

本試題共6頁:第6頁

(B) Antigen presentation

(D) Self-tolerance

(A) Immunological memory

(C) Clonal selection