高雄醫學大學 113 學年度學生轉系考試【普通化學】試題

說明:一、請一律以「答案卷」作答,作答時不得使用鉛筆,違者該科答案卷不予計分;
限用黑色或藍色墨水的筆書寫。
二、考生應在答案卷上規定範圍內作答,且不得書寫任何與答案無關之文字、符
號,違者該科不予計分。
三、答案卷以每人一張為限,不得要求增補;試題與答案卷必須繳回,不得攜出
試場。

*可使用工程型計算機

1. Wh	ich of the follow	ving com	binations of qu	iantum nur	nbers are not	allowed?				
I.	$n=3, l=3, m_l=0, m_s=-1/2$									
II.	n=4, l=3, m	$n_l = 2, m_s =$	-1/2							
III.	n=4, l=1, m	$n_l = -1, m_s =$	= +1/2							
IV.	$n = 5, l = -4, m_l = 2, m_s = +1/2$									
(A)	III, IV	(B)	II, III	(C)	I, II	(D)	I, IV	(E)	I, III, IV	
2. Cor	sider the follow	ing order	ings.							
I.	F <si<ba< td=""><td>II. S</td><td><te<se< td=""><td>III. Be</td><td><na<rb< td=""><td>IV. O<</td><td>Fe<p< td=""><td></td><td></td><td></td></p<></td></na<rb<></td></te<se<></td></si<ba<>	II. S	<te<se< td=""><td>III. Be</td><td><na<rb< td=""><td>IV. O<</td><td>Fe<p< td=""><td></td><td></td><td></td></p<></td></na<rb<></td></te<se<>	III. Be	<na<rb< td=""><td>IV. O<</td><td>Fe<p< td=""><td></td><td></td><td></td></p<></td></na<rb<>	IV. O<	Fe <p< td=""><td></td><td></td><td></td></p<>			
Wh	ich of these give	e the corre	ect trend in ord	ler of incre	asing size?					
(A)	III	(B)	I, II	(C)	I, III	(D)	I, IV	(E)	I, III, IV	
3. Cale	culate the equili nloroacetic acid,	brium mo , Cl ₃ CCO	lar concentrati OH, in 10.0 m	ion of Cl ₃ C L (the acid	COOH in an is 65% ioniz	aqueous sol ed in water)	ution that con	ntains 285 n	ng of	
(A)	0.174 M	(B)	61.04 M	(C)	0.113 M	(D)	0.061 M	(E)	113.4 M	
4. Asc	orbic acid, or vi cal tablet contai	tamin C (ins 500.0	$C_6H_8O_6$), is an mg vitamin C.	essential what num	vitamin. Vitar ber of vitami	nin C tablets	s are taken as	a dietary su tablets?	ipplement. If a	
(A)	$1.37 \ge 10^{22}$	(B)	3.17×10^{25}	(C)	1.71 x 10 ²⁴	(D)	1.71×10^{21}	(E) 2	$2.84 \times 10^{23} \text{ molecul}$	es
5. A so mL solu	olution is prepar- sample of this s ation.	ed by diss tock solut	olving 10.8 g attion is added to	ammoniun o 50.00 mI	n sulfate in en 2 of water. Ca	ough water t lculate the c	to make 100.0	0 mL of stoc of ammoni	ek solution. A 10.00 um ions in the fina) 1
(A)	0.136 M	(B)	0.272 M	(C)	0.818 M	(D)	0.163 M	(E)	0.327 M	
6. Hov	w many electron	s in an ato	om can have th	ne quantum	n numbers <i>n</i> =	$= 5, m_l = +1?$,			
(A)	2	(B)	6	(C)	8	(D)	10	(E)	18	
7. An	unknown diaton	nic gas ha	s a density of I	3.164 g/L a	at STP. What	is the identit	y of the gas?			
(A)	O _{2(g)}	(B)	Br _{2(g)}	(C)	F _{2(g)}	(D)	N _{2(g)}	(E)	Cl _{2(g)}	
8. Cale	culate the molar d (w/w).	concentra	ation of perchl	oric acid i	n a solution th	nat has a spe	cific gravity	of 1.67 and	is 71% perchloric	

高雄醫學大學 113 學年度學生轉系考試【普通化學】試題

9. Con Calc	sider the titration sulate the pH of th	of 100. ne result	0 mL of 0.100 <i>M</i> ing solution afte	$1 C_2 H_5 N$	$H_2 (K_b = 5.6 \times 10^{-10})$ 0mL of 0.200 M	0 ^{–4}) by 0 ' HCl has	.200 <i>M</i> HCl at 2 s been added.	5.0°C.	
(A)	pH=1.83	(B)	pH=3.25	(C)	pH=8.24	(D)	pH=12.17	(E)	pH=10.75
10. A c a. j b. c. 1 d. e. s Whi (A) (B) (C) (D) (E)	hemist needs a so propanoic acid chloroacetic acid benzoic acid hypochlorous acid salicylic acid ch system will wo propanoic acid chloroacetic ac benzoic acid hypochlorous a salicylic acid	olution b	puffered at pH 5. $X_a = 1.3 \times 10^{-5}$ $X_a = 1.35 \times 10^{-3}$ $X_a = 6.4 \times 10^{-5}$ $X_a = 3.5 \times 10^{-8}$ $X_a = 1.06 \times 10^{-3}$?	.0 and ca	n choose from th	ne follow	ring acids (and th	eir sodiu	m salts):
11. In t	he Lewis structur	e for xe	enon dichloride,	how mar	ny lone pairs of e	electrons	are around the c	entral xe	non atom?
(A)	1	(B)	2	(C)	3	(D)	4	(E)	5
12 Ca	culate the root m	000 COU	are velocity of (۲H، (a) n	polecule at 5/6K				
(A)	29.2 m/s	(B)	922.6 m/s	(C)	91.7 m/s	 (D)	2.9 m/s	(E)	532.7 m/s
13. Cat (A) 14. A s flue (A)	lculate the pH of a pH=5.25 olution is prepare oride. Calculate th 1.8 x 10 ⁻⁶ M	a 0.05 <i>M</i> (B) ed by mit he conce (B)	<i>A</i> NaCN solution pH=3.05 exing 100.0 mL of entration of mag 5.4 x 10 ⁻⁷ M	n. The p <i>K</i> (C) of 1.00 × nesium i (C)	Ka value for HCN pH=11.83 10 ⁻² M magnesi on at equilibriun 9.2 x 10 ⁻⁷ M	N is 9.2. (D) um nitra n with so (D)	pH=10.95 te and 200.0 mL blid magnesium f 4.7 x 10 ⁻⁶ M	(E) of 1.00 > luoride (. (E)	pH=8.75 $\times 10^{-1} M$ sodium $K_{sp} = 6.4 \times 10^{-9}$). $6.3 \times 10^{-10} M$
15. Wł I. II. III. IV. V. (A)	nich of the follow selenium trioxic silicon tetrafluo xenon tetrafluor arsenic pentach nitrite ion: V-sh III, V	ing sets le: T-sha ride: tet ride: tet loride: t aped str (B)	of molecular str aped structure trahedral structur rahedral structur rigonal bipyram tructure II, III, V	ructure an re e idal struc (C)	re incorrect? cture I, II, III,V	(D)	I, III	(E)	I, IV, V
16. A 1	.37 <i>M</i> solution of	f citric a	cid (H3C6H5O7)	in water	has a density of	£1.10 g/c	cm ³ . Calculate th	e mole fr	action of the citric
aci	d. Citric acid has	three ac	idic protons.		5	0			
(A)	0.056	(B)	0.0035	(C)	0.084	(D)	0.0093	(E)	0.028
17. A 3 wit hyc	0.00-mL of a mix h $0.1000 M$ sodi droxide has been a	cture tha ium hyc added.	at is 0.1500 <i>M</i> in Iroxide. Calcula	hydroch te the pl	lloric acid and 0. H of the resultin	.0500 M ng soluti	in nitrous acid (on after the 8.0	Ka=4.0x 0 mL of	(10 ⁻⁴) is titrated 0.1000 <i>M</i> sodium

(A) 1.01 (B) 2.10 (C) 3.45 (D) 4.39 (E) 8.33

高雄醫學大學 113 學年度學生轉系考試【普通化學】試題

18. What volume of 2.0 *M* sodium hydroxide must be added to 200.0 mL of 1.00 *M* glycolic acid to produce a buffer solution having a pH of 4.00? (pKa for glycolic acid is 3.83)

(A) 67.6 mL (B) 148 mL (C) 59.7 mL (D) 78.6 mL (E) 83.3 mL

19. When 1.00 L of 1.00 M barium nitrate solution at 25.0°C is mixed with 1.00 L of 1.00 M sodium sulfate solution at 25.0°C in a calorimeter, the white solid barium sulfate forms, and the temperature of the mixture increases to 32.1°C. Assuming that the calorimeter absorbs only a negligible quantity of heat, the specific heat capacity of the solution is 4.18 J/°C \cdot g, and the density of the final solution is 1.0 g/mL, calculate the enthalpy change per mole of barium sulfate formed.

(A) 59 KJ/mol (B) -59 KJ/mol (C) 30 KJ/mol (D) -30 KJ/mol (E) 89 KJ/mol

20. Which of the following statements are incorrect?

- I. The hybridization of boron in boron trifluoride is sp^2 .
- II. The molecule iodine trifluoride is nonpolar.
- III. The bond order of disulfur is three.
- IV. The molecule hydrogen cyanide has two pi bonds and two sigma bonds.
- V. The magnetism of P_2 is paramagnetic.

(A) I, II, III, V (B) I, III (C) III, V (D) I, IV (E) II, III, V