110學年度 學士後醫學系招生考試

普通生物及生化概論試題封面

考試開始鈴響前,請勿翻閱本試題!

★考試開始鈴響前,請注意:

- 一、除准考證、應考文具及一般手錶外;行動電話、穿戴式裝置及其他物品 均須放在臨時置物區。
- 二、請務必確認行動電話已取出電池或關機,行動電話及手錶的鬧鈴功能必 須關閉。
- 三、就座後,不可擅自離開座位或與其他考生交談。
- 四、坐定後,雙手離開桌面,確認座位號碼、答案卡號碼與准考證號碼相同,以及抽屜中、桌椅下或座位旁均無非考試必需用品。如有任何問題,請立即舉手反應。
- 五、考試開始鈴響前,不得翻閱試題本或作答。
- 六、考試全程不得吃東西、喝水及嚼食口香糖。
- 七、違反上述規定,依「筆試規則及違規處理辦法」議處。

★作答說明:

- 一、考試時間:100分鐘。
- 二、本試題(含封面)共16頁,如有缺頁或毀損,應立即舉手請監試人員 補發。
- 三、本試題共90題,皆為單選題,共計150分;每題答錯倒扣,不作答不計分。
- 四、答題依題號順序劃記在答案卡上,寫在試題本上無效;答案卡限用 2B 鉛筆劃記,若未按規定劃記,致電腦無法讀取者,考生自行負責。
- 五、試題本必須與答案十一併繳回,不得攜出試場。

Choose one best answer for the following questions

【單選題】每題 1 分,共計 30 分,答錯 1 題倒扣 0.25 分,倒扣至本大題零分為止,未作答,不給分亦不扣分。1~15 題為普通生物,16~30 題為生化概論。

1.		rmation of new species occ r is	urred	in pop	ulations th	at are geo	ograph	ically isolated	I from one
		peripatric speciation	(B)	symn	atric sneci	ation	(C)	allopatric sp	eciation
	(D)		(E)		ial speciat		(0)	иноринге зр	ceration
	(D)	parapatire speciation	(<i>L</i>)	artific	au speciu	.1011			
2.	If a sp contair	pecies contains 23% adenir	ne in	its gen	ome, wha	t is the p	ercent	age of guanir	ne it would
		23% (B) 46%		(C)	25%	(D)	44%	(E)	27%
3.	Severa	l butterfly species that are	edible	e to bird	ls have ve	ry simila	r color	patterns to th	e generally
	inedibl	le Monarch butterfly. This i	s best	descri	bed as an e	example o	of	·	
	(A)	Batesian mimicry	(B)	Mülle	rian mimi	cry	(C)	crypsis	
	(D)	aposematic coloration	(E)	subte	rfuge				
4.	Which	description about the statu	ıs of	action 1	ootential o	of voltage	-gated	Na ⁺ and K ⁺	channels is
	FALSI	E?							
	(A)	resting state: both Na ⁺ and	d K ⁺	channel	s close				
	(B)	depolarization: some Na ⁺	chan	nels op	en and K ⁺	channels	close		
	(C)	rising phase of action pote	ential	: both N	Na+ and K	+ channe	ls oper	1	
	(D)	falling phase of action po	tentia	1: Na ⁺ c	hannels c	lose and l	K ⁺ cha	nnels open	
	(E)	None of the above							
5.	In vert	ebrates with four-chambere	ed he	arts, the	e r	receives o	xygen	ated blood di	rectly from
	the	·							
	(A)	right ventricle, lungs			(B)	right ven	tricle,	right atrium	
	(C)	left atrium, left ventricle			(D)	left venti	ricle, le	eft atrium	
	(E)	left ventricle, lungs							
6.	Which	description about the endo	crine	system	is FALSE	E?			
	(A)	Epinephrine synthesized	from	tyrosine	e is secrete	ed from a	drenal	medulla.	
	(B)	Posterior pituitary synthes	sizes	and sec	rets antidi	uretic ho	rmone	(ADH) and o	xytocin.
	(C)	Parathyroid hormone (PT	H) ra	ises blo	od Ca ²⁺ le	evel by st	imulati	ng kidneys ar	nd bones.
	(D)	Glucocorticoids increase response.	blood	glucos	e and supp	press imn	nune s	ystem in long	-term stress
	(E)	None of the above							

7.	Which	description about dig	gestive syste	m is F	ALSE?								
	(A)	Pantothenic acid, a	component	of coe	nzyme A,	causes	fatigue	in deficiency.					
	(B)	Magnesium, an enz	yme cofacto	r, caus	ses nervou	ıs syste	em distur	bance in defi	ciency.				
	(C)	Cholecystokinin (C	CK) stimula	ites the	release o	of enzy	me from	pancreas.					
	(D)	Leptin, produced by	adipose tis	sue, st	imulates a	appetit	e.						
	(E)	None of the above											
8.	Which	description about cyc	elic AMP (c.	AMP)	is FALS l	E?							
	(A)	It is formed from A	ΓP by phosp	hodies	sterase.								
	(B)	•											
	(C)	It regulates the activity of synaptic ion channels.											
	(D)	It regulates the expr	ression of La	acZ (ß-	galactosi	dase) i	n <i>E. coli</i> .						
	(E)	None of the above											
9.	Which	ion in plants is NOT	matched w	ith its	function?								
	(A)	Zn ²⁺ water balance	ee		(B)	K ⁺	stomata	operation					
	(C)	Fe ³⁺ chlorophyll s	synthesis		(D)	Mg^{2+}	compo	onent of the c	hlorophyll				
	(E)	None of the above											
10.	Which	one is NOT a comm	on model or	ganisr	n in devel	lopmer	ntal genet	tics?					
	(A)	Mus musculus			(B)	Caen	orhabdit	is elegans					
	(C)	Cinnamomum camp	hora		(D)	Arab	idopsis th	haliana					
	(E)	None of the above					-						
11.	During	the local inflammat	ory respons	e, wha	it chemic	al is re	eleased b	y mast cells	that increase				
	capilla	ry permeability?											
	(A)	proteases (B)	heparin	(C)	histamin	ne (I	D) IgE	(E)	complement				
12.	If the si	mooth endoplasmic re	eticulum wa	s remo	ved from	the ce	ll, which	of the followi	ng processes				
	would	be mostly affected?											
	(A)	protein synthesis	(B)	packa	iging prot	eins	(C)	secreting p	roteins				
	(D)	lipid synthesis	(E)	transı	porting pr	oteins							
13.	Blocka	ge of the common bi	le duct woul	ld affe	ct	_•							
	(A)	starch digestion	(B)	cellul	ose diges	tion	(C)	lipid digest	tion				
	(D)	protein digestion	(E)	nucle	otide dige	estion							
14.	Which	bone belongs to the a	appendicula	r skele	ton?								
	(A)	skull	(B)		bral colun	nn	(C)	rib cage					
	(D)	femur	(E)	sterni	ım								

-	ent has a blood pres at, and a respiratory		• •						
(A)	- 1,000 mL (B)	1,500 mL	(C) 3,000	mL	(D)	4,500	mL	(E)	7,200 mL
16. Which	of the following cel	l conditions	involves rever	se tra	nscrip	tase acti	vity?		
(A)	replicate DNA lagg	ging strand	(B)) re	plicate	DNA le	eading	strano	d
(C)	replicate viral RNA	A	(D) re	plicate	DNA ir	ı SV4	0 virus	S
(E)	replicate mRNA								
17. Which	of the following che	emicals is all	osteric activat	or of	carban	noyl pho	osphat	e synt	hetase I?
(A)	N-Acetylglutamate	(B)	Citrulline			(C)	Ornitl	nine	
(D)	Aspartate	(E)	Glutamine						
18. Which	of the following me	tabolites is p	produced by ur	acil d	degrada	ation?			
(A)	Uric acid	(B)	β-Alanine			(C)	Carba	moyl	phosphate
(D)	β-Aminoisobutyrat	te (E)	Ammonia						
19. The 5′-	→3' exonuclease ac	tivity of E . c	<i>oli</i> DNA polyr	neras	se I is i	nvolved	in	c	luring DNA
replica	tion.								
(A)	proofreading		(B)) re	moval	of RNA	prim	ers	
(C)	sealing of nick		(D) fo	rmatio	n of Ok	azaki	fragm	ents
(E)	formation of a nick	at the origin	1						
20. Glutan	nate is metabolically	y converted	to α-ketogluta	arate	and N	H_4^+ in 1	mitocl	nondri	a matrix of
hepato	cyte by a process de	scribed as _							
(A)	hydrolysis	(B)	transaminatio	on		(C)	oxida	tive de	eamination
(D)	one-carbon transfe	r (E)	thiolysis						
21. Posttra	nslational modificat	ion of protei	ns may includ	e the	follow	ings EX	CEP	Γ	
(A)	adding disulfide br	idge.							
(B)	adding cofactors an	nd prosthetic	groups.						
(C)	cleavaging the nase	cent peptide.							
(D)	adding a signal seq	uence at the	N-terminus.						
(E)	adding oligosaccha	nrides in end	oplasmic retic	ulum					

22.	Which	one of these characteristics	s is F A	ALSE for the α -helix in protein?
	(A)	There are 3.6 amino acids	per t	turn.
	(B)	There is a requirement for	r glyc	cine in every third amino acid residue.
	(C)	A H-bond forms between	the ca	arbonyl oxygen of the nth amino acid residue and the amido
		proton of the $(n + 4)^{th}$ am	ino ac	cid residue.
	(D)	Proline is typically not fo	und ir	in the α -helix.
	(E)	A single turn of the helix	exten	nds about 5.4 Å along the long axis.
23.	Which	form of tetrahydrofolate i	s used	ed in the enzymatic transfer of formyl group, as in purine
	synthes	sis and in the formation of	formy	yl-methionine in prokaryotes?
	(A)	N ⁵ -Formyl-tetrahydrofola	ite	(B) N ⁵ -Formimino-tetrahydrofolate
	(C)	N ¹⁰ -Formyl-tetrahydrofol	ate	(D) N ⁵ , N ¹⁰ -Methenyl-tetrahydrofolate
	(E)	Tetrahydrofolate		
24.	Hydrox	xylation of proline residu	es in	n collagen is catalyzed by proly1 4-hydroxylase. The
	enzyma	atic action of prolyl 4-hydr	oxyla	ase requires: ① Ascorbic acid; ② α-Ketoglutarate;
	③ Cu ²	$^{2+}$; 4 ATP; 5 Fe ²⁺		
	(A)	$\bigcirc, \bigcirc, \bigcirc$ (B) \bigcirc, \bigcirc	,4	(C) $1,2,5$ (D) $1,3,4$ (E) $1,4,5$
25.	Which	of the following reactions	requir	ires vitamin K?
	(A)	carboxylation of glutamat	te	(B) ADP ribosylation of tyrosine
	(C)	methylation of arginine		(D) oxidation of cysteine
	(E)	amidation of C-terminus	of the	e polypeptide
26.	Which	of the following proteins p	lays a	a dual role in modulating protein folding and conformation
	of sterc	oid hormone receptors in eu	ıkaryo	votic cells?
	(A)	CroES-CroEL complex	(B)	Hsp60 (C) Prefoldin
	(D)	Hsp90	(E)	Chaperonin
27.	By con	npleting β-oxidation of fatt	y acid	d with odd number of carbons, will enter the citric
	acid cy	cle. ① acetyl-CoA; ②	mal	late; ③ α-ketoglutarate; ④ succinyl-CoA
	(A)	①,② (B) ①,③		(C) $\textcircled{1},\textcircled{4}$ (D) $\textcircled{2},\textcircled{3}$ (E) $\textcircled{3},\textcircled{4}$
28.	Which	of the following tools is N	OT us	used to quantify the level of gene expression?
	(A)	real-time RT-PCR	(B)	RNase protection assay (C) Northern blotting
	(D)	Western blotting	(E)	Southern blotting

- 29. Enzymes are potent catalysts because they _____.
 - (A) are consumed in the reactions they catalyze
 - (B) are very specific and the converted products cannot return to substrates
 - (C) drive reactions to completion, while other catalysts drive reactions to equilibrium
 - (D) increase the equilibrium constants for the reactions they catalyze
 - (E) lower the activation energy for the reactions they catalyze
- 30. What is the major apo-lipoprotein and lipid in high-density lipoprotein (HDL)?
 - (A) ApoB-48, cholesterol ester
- (B) ApoB-100, phospholipid

(C) ApoE, free cholesterol

- (D) ApoA-I, phospholipid
- (E) ApoA-II, cholesterol ester

【單選題】每題 2 分,共計 120 分,答錯 1 題倒扣 0.5 分,倒扣至本大題零分為止,未作答,不給分亦不扣分。31~60 題為普通生物,61~90 題為生化概論。

- 31. Which description about the hormones regulation in human reproduction is **FALSE**?
 - (A) Inhibin inhibits anterior pituitary to secret follicle-stimulating hormone (FSH) in male.
 - (B) Testosterone inhibits hypothalamus to secret gonadotropin-releasing hormone (GnRH) in male.
 - (C) Low levels of estradiol inhibits anterior pituitary to secret FSH in female.
 - (D) High levels of estradiol stimulates hypothalamus to secret GnRH in female.
 - (E) None of the above
- 32. Regarding to the mitochondria, which statement is **FALSE**?
 - (A) According to the concept of endosymbiotic theory, the mitochondria extracted from monkey can be transferred into human cells.
 - (B) The genome size of plant mitochondria is much larger than animal's.
 - (C) A cell can contain more than one mitochondria.
 - (D) Mitochondria can produce ATP more quickly than glycolysis.
 - (E) Mitochondria can do transcription and translation.
- 33. What do synaptic signaling and paracrine signaling have in common?
 - (A) Cells bind a membrane bound signal on a neighboring cell.
 - (B) Cells release a signal that affects cells at long distances.
 - (C) Cells release a signal that affects itself and neighboring cells.
 - (D) Cells release a signal that affects neighboring cells.
 - (E) Cells release a signal through gap junctions to affect neighboring cells.

34.	Which	of the following descriptions about of	cell division	is FALSE ?		
	(A)	Animal cells form centrioles during	g cell division	1.		
	(B)	Animal cells form a cleavage furror	w to form ne	w daughter cell	S.	
	(C)	There is phragmoplast alignment of	f Golgi-deriv	ed vesicles in p	lant cell division.	
	(D)	The cell plate is the final partitioning	ng of plant ce	ells.		
	(E)	Plant cells resort to binary fission.				
35.	Which	is a common feature of gymnosperm	ns and angios	sperms?		
	(A)	pollen tubes	(B)	flagellated spen	rms	
	(C)	sperms carried by windborne poller	n (D)	fruits		
	(E)	flowers				
36.	Which	description about the immune system	n is FALSE ?			
	(A)	Helper T cells bind antigen-presentic complex (MHC) and accessory pro-	tein (CD8).	•		-
	(B)	APCs secret cytokines such as intercell activation.				Γ
	(C)	Cytotoxic T cell releases perforin a	nd granzyme	s to kill infected	d cells.	
	(D)	Pathogens can be disposed by antib complement system activation	odies throug	h neutralization	, opsonization, or	
	(E)	None of the above				
37.	Which	description about virus is FALSE ?				
	(A)	Provirus is the viral DNA incorpora	ated into host	cell's DNA.		
	(B)	The envelope of RNA virus contains	s the cell mer	nbrane of host a	and glycoproteins of virus	
	(C)	Adenovirus, papillomavirus, herpes	svirus, and po	oxvirus are DNA	A viruses.	
	(D)	Virods are DNA molecules that infe	ect plant cells	S.		
	(E)	None of the above				
38.	Breakd	own of the fat storage at brown fat ti	issue in some	e animals increa	ses when	
	(A)	torpor (B) exercising (C	shivering	g (D) hiber	rnation (E) sleeping	
39.	In natu	re, population size could be controlle	ed by a densi	ty-independent	factor. Which of the	
	followi	ngs would be a possible case?				
	(A)	forest fires (B) con	mpetition	(C)	parasites	
	(D)	predation (E) inf	ection diseas	e		

- 40. In plants, the red light can be absorbed by _____.
 - (A) Pr type phytochrome
 - (B) Plastoquinone (PQ) of photosystem II (PSII)
 - (C) carotenoids
 - (D) ribulose biphosphate (RuBP)
 - (E) ATP synthase
- 41. Which event for muscle contraction is **FALSE**?
 - (A) Binding of acetylcholine to receptors stimulates Ca²⁺ pumping into sarcoplasmic reticulum.
 - (B) Binding of tropomyosin to actin covers myosin-binding site.
 - (C) Binding of Ca²⁺ to troponin exposes myosin-binding site of actin.
 - (D) Binding of ATP releases myosin from actin.
 - (E) None of the above
- 42. Which description about the diseases is **FALSE**?
 - (A) Severe combined immunodeficiency (SCID) is caused by adenosine deaminase deficiency.
 - (B) Cystic fibrosis (CF) is caused by a Na⁺ transporter gene deficiency.
 - (C) Tay-Sachs disease is caused by a lipid metabolized gene deficiency.
 - (D) α_1 Antitrypsin deficiency causes emphysema.
 - (E) None of the above
- 43. Which description about the excretory system is **FALSE**?
 - (A) The nasal glands of marine birds concentrate salt.
 - (B) The Malpighian tubes of insects remove nitrogenous wastes.
 - (C) Glucose and amino acids are reabsorbed in descending limb of the loop of Henle.
 - (D) The juxtaglomerular apparatus (JGA) releases renin when blood pressure drops.
 - (E) None of the above
- 44. Which description about the circulatory and respiratory systems is **FALSE**?
 - (A) The spike (QRS complex) of electrocardiogram (ECG) represents the signal passing from atrioventricular (AV) node to heart apex.
 - (B) Individuals with a high ratio of LDL/HDL have risk for atherosclerosis.
 - (C) The diaphragm contracts during inhalation in human.
 - (D) Medulla can detect the decreased blood pH.
 - (E) None of the above

- 45. Which description about the nervous system is **NOT** matched with its function?
 - (A) Acetylcholine stimulates heart muscle.
 - (B) Reticular formation regulates arousal and sleep.
 - (C) Parasympathetic nerves stimulate stomach activity.
 - (D) Amygdala controls emotional memory.
 - (E) None of the above
- 46. Which assumption is **NOT** the basis for Hardy-Weinberg equilibrium?
 - (A) random mating
 - (B) natural selection
 - (C) large population with genetic drift
 - (D) no gene migration of alleles into or out of the population
 - (E) no mutation
- 47. What is the primary original source of genetic variation in a population?
 - (A) mutation
- (B) genetic drift
- (C) inbreeding

(D) cloning

- (E) None of above
- 48. Which protist is **NOT** matched with its disease?
 - (A) Plasmodium malaria
 - (B) Trichomonas sexual transmitted disease
 - (C) Leishmania skin disease
 - (D) Trypanosoma intestinal infection
 - (E) None of the above
- 49. Which description about fungi is **FALSE**?
 - (A) Athlete's foot and ringworm are caused by fungi.
 - (B) Candida albicans is a fungi to infect vagina.
 - (C) Forming buds instead of spores are more effectively in sticking to lung cells.
 - (D) Coccidioidomycosis is treated with antibiotics.
 - (E) None of the above
- 50. Which description about the reproductive system is **FALSE**?
 - (A) Spermatheca is used to store sperms in female fruit fly.
 - (B) Epididymis is used to store sperms in men.
 - (C) Oogenesis begins at embryonic development of women.
 - (D) Hypothalamus is stimulated by combinations of high levels estradiol and progesterone.
 - (E) None of the above

51. Which	of the following animals h	as the	largest basic me	etabolic rate (BN	IR) per body mass?
(A)	500 kg horse	(B)	60 kg human	(C)	60 kg alligator
(D)	0.5 kg lizard	(E)	0.5 kg rat		
52. Which	is the WRONG descriptio	n abo	ut sexual reprod	uction of fungi?	
(A)	Fungi release pheromone	s to fi	nd the correction	n mating type.	
(B)	After plasmogamy, nuclei	i of tw	vo mycelia fuse i	immediately.	
(C)	A zygote is formatted after	er kary	yogamy.		
(D)	A heterokaryon contains t	wo co	oexisting, geneti	cally different n	uclei.
(E)	A heterokaryon can be ex	tende	d hours, days, or	even years.	
53. In a la	rge population of a plant s	pecie	s, which of the	following situat	ions is the least likely to
change	allele frequencies within t	he po	pulation?		
(A)	A forest fire destroys mos	st of in	ndividuals in the	population	
(B)	Radioactive fallout from	an acc	cident at a nuclea	ar power plant	
(C)	Microhabitats within the chance of surviving	range	of the population	on where certain	phenotypes have a better
(D)	The preference of a pollir	nator f	for a certain flow	er color	
(E)	Wind pollination of the fl	owers	\$		
54. Which	of the following is NOT re	elated	to the parasymp	athetic nervous	system?
(A)	Lacrimal glands that prod	luce te	ears		
(B)	Fight or flight responses				
(C)	Nerves in the stomach and	d trun	k		
(D)	Nerves that go to the blad	lder			
(E)	Nerves and blood vessels	respo	onsible for the m	ale erection	
55. Which	of the followings is NOT a	a stero	oid hormone?		
(A)	progesterone		(B)	testosterone	
(C)	mineralocorticoid		(D)	estradiol	
(E)	follicle-stimulating hormo	one			
56. A patie	ent CANNOT form new los	ng-ter	m memories afte	er a serious brain	n damage of
(A)	somatosensory cortex	(B)	motor cortex	(C)	frontal lobe of cortex
(D)	thalamus	(E)	hippocampus		

57.	Which	is NOT a fur	nction	of the p	igmeı	nt epith	elium in	retina?				
	(A)	absorption of	of scatt	ered lig	ht							
	(B)	phagocytizi	ng she	d outer	discs							
	(C)	isomerize th	ne all-ti	rans reti	inal to	the 11	l-cis form	n				
	(D)	delivery of	nutrien	ts to the	e pho	torecep	otors					
	(E)	creating the	dark c	urrent c	of the	photor	eceptors					
58.	The for	rm and functi	on of i	nephron	s in v	ertebra	ate kidne	y have a	differen	t adaptat	ion to	o meet their
	require	ments for osi	noregu	ılation.	Whic	h one i	s CORF	RECT?				
	(A)	Freshwater dilute urine		conserv	e sal	t in the	eir proxi	mal tubu	les and	excrete 1	large	volumes of
	(B)	Amphibians	conse	rve wat	er on	land b	y reabso	rbing wa	ter from	collectin	ng du	ct.
	(C)	Mammals tl	nat inh	abit in f	resh v	water h	ave rela	tively lor	ig loops	of Henle) .	
	(D)	Birds have s	shorter	loops o	of He	ndle.						
	(E)	Most reptile	es excre	ete uric	acid	by juxt	amedull	ary nephi	on.			
59.	Which	organ or tiss	ue is di	fferenti	ated t	from m	esoderm	?				
	(A)	epidermis o	f skin		(B)	nervo	us syste	m	(C)	adrena	l med	lulla
	(D)	dermis of sl	kin		(E)	thym	us					
60.		are NOT de	rived f	rom my	eloid	stem o	cell.					
	(A)	Basophils			(B)	Eryth	rocytes		(C)	Lymph	ocyte	es
	(D)	Monocytes			(E)	Platel	lets					
61.	Ribonu	ıcleotide redu	ictase o	atalyze	s the	reducti	on of rib	onucleot	ides to d	leoxyrib	onucl	eotides.
	Which	of the follow	ing co	factors a	are es	sential	for the a	ctivity o	f ribonu	cleotide	reduc	etase?
	① NA	DPH; 2	Γhiorec	doxin;	3 1	NADH;	\oplus G	lutaredox	xin; 5	Tetrahy	drof	olate
	(A)	1,2,5	(B)	1,2,	4	(C)	1,3,0	5) (D) 2,3),(5)	(E)	2,3,4
62.	In euka	aryotic matur	ed mR	NA, wh	ich o	ne of th	ne follow	ing state	ments is	FALSE	2?	
	(A)	Both 5' and	3' end	s contai	n a fi	ee 3-O	H group	on ribos	e.			
	(B)	Intron is rer	noved	in the n	nature	ed RNA	λ.					
	(C)	Poly(A) tail	is add	ed to 3'	end i	n matu	red RNA	A .				
	(D)	Methylation	can b	e found	on 5	end.						
	(E)	Splicing nee	eds snF	RNAs.								
63.		that is unable	-	thesize	or ob	tain tet	rahydrof	olate wo	uld prob	ably be	defici	ent in the
	(A)	dGMP	· (B)	dCMP)	(C)	dAMP	(D) dTM	P	(E)	dUMP
	(11)	301111	(3)	G (1711			G1 11111	(D	, 41111	•	(2)	401111

64.	Pompe	disease is a g	glycog	en storage di	isease c	aused by o	defect in _	·		
	(A)	glycogen ph	ospho	rylase		(B)	lysosoma	al α-1,4-gluc	osidase)
	(C)	glycogen br	anchir	ig enzyme		(D)	glucose-	6-phosphata	se	
	(E)	phosphoryla	ase kin	ase						
65.	heterot activity of som	of the follow tropic alloster y of enzymes. he allosteric er conformation	ic mod	lulator. ② .llosteric enz	Alloster symes ty I by fee	ric regulat ypically ha dback inhi	ion can ir ve oligon	crease or de neric structur	ecrease tre. 4	the catalytic The activity
	(A)	(1,2,3)	(B)	(1,2,4)	(C)	(1), (3), (4)	(D)	(1,3,5)	(E)	2,3,4
66.	ribozy	of the follow me. ② Amir mmerhead rib ①,②,③	noacyl	-tRNA synth	etase is	a ribozym s-splicing	ne. ③ Thereaction.	ie substrate o	of riboz	yme is RNA.
67.	origina	of the follow ate from exog a. 3 Some m	genous	dsRNA.	② miR	RNAs form	n a perfe	ct compleme	entary 1	to its target
					=					IIIXINAS Call
	(A)	te mRNA dec ①,⑤	(B)	2,3	(C)	=	(D)		(E)	3,5
	(A)	₾,⊎	(D)	2,0	(C)	0 , 	(D)	∅ , ⊕	(L)	\odot, \odot
68.	Which	of the follow	ing sta	ntements abo	ut glyc	ogen is FA	LSE?			
	(A)	_	_	ate is releas me glycogen			cing ends	of the gluce	ose pol	ymer by the
	(B)	In glycogen $\alpha(1\rightarrow 4)$ box		down, it invo	olves se	equential p	hosphoro	lytic cleavag	ges of	
	(C)	Glycogen is	the st	orage polysa	ccharic	le in skelet	tal and liv	er cells.		
	(D)	Glycogen is	a poly	mer of gluc	ose in c	$\alpha(1\rightarrow 4)$ lin	nkages wi	th $\alpha(1\rightarrow 6)$ l	inked b	ranches.
	(E)	The breakdo	own o	f glycogen i	n skele	tal muscle	ultimate	ly enters gly	colysis	to generate
69.	Which	of the follow	ing sta	atements for	Shine-I	Dalgarno s	equence a	are CORRE	CT?	
		ne-Dalgarno s	_			_	-			equence is a
		-rich sequenc	_		_	=		_		_
	4 Shi	ne-Dalgarno s	sequen	ce is involve	ed in D	NA replica	ation. 5	Shine-Dalg	garno se	equence can
	base-p	air with a seq	uence	of 16S rRNA	4.					
	(A)	(1)(2)(3)	(B)	(1)(2)(5)	(C)	\bigcirc \bigcirc \bigcirc \bigcirc	(D)	\bigcirc \bigcirc \bigcirc \bigcirc	(E)	$\bigcirc \bigcirc $

	of the follow ced from lysin									
in the	production o	f NO.	4 Adeny	l cycla	ses are recep	otors fo	or NO.	5 NO pr	oduction in	
endoth	elial cells lea	ds to v	asodilation.							
(A)	1,2,3	(B)	2,3,4	(C)	3,4,5	(D)	1,3,4	(E)	2,3,5	
71. Which	of the follow	ing sta	atements abo	ut oxid	ative phosph	orylati	on are CO	RRECT)	
① Oxi	idative of NAI	DPH o	ccurs in mito	chondr	ia. ② The p	product	tion of ATI	is driven	by electron	
transpo	ort and proto	n grad	lient. 3 T	he proc	ess of chem	iiosmot	tic couplin	g is invo	olved in the	
-	sis of ATP in			•				•		
	norylation of A									
(A)	(1,3,5)	(B)	(1,2,3)	(C)	2,3	(D)	3,4,5	(E)	3,5	
72. Which	of the follow	wing s	tatements ab	out <i>lac</i>	operon is	CORR	ECT? ①	The repr	essor is the	
proteir	n product of	lac Z	gene. ② T	The lac	operon can	be tur	ned on by	β-galac	toside. ③	
Repres	ssor binds to	the op	erator and b	locks t	he binding o	of RNA	k polymera	ise to pro	omoter. 4	
Isopro	pyl-β-D-thiog	alacto	side can bind	l to Lac	repressor to	turn or	n protein ex	xpression	. ⑤ In the	
lac op	eron model, tl	ne gene	es within the	operor	will be expi	ressed i	f lactose is	s present	in E. coli.	
(A)	1,2,3	(B)	1,2,4	(C)	2,3,4	(D)	3,4,5	(E)	2,3,4,0	5)
73. Which	of the follo	wing s	statements a	bout gl	utathione are	e COF	RRECT?	① Glutat	hione is an	
antiox	idant. 2 Glut	tathion	e is a tetrape	eptide.	3 Glutathio	ne is n	ot involve	d in detox	xification of	•
xenob	iotics. 4 The	biosyı	nthsis of glut	tathione	e synthesis o	ccurs a	s a part of	γ-glutam	yl cycle. ⑤	
Oxidiz	ed glutathion	e is red	duced by glu	tathion	e reductase.					
(A)	1,2,3	(B)	1,3,4	(C)	(1), (4), (5)	(D)	2,3,4	(E)	1,2,5	
74. Which	of the follow	ing sta	atements abo	ut citric	acid cycle i	s FAL S	SE?			
(A)	The first rea	ection i	is to synthesi	ze citri	c acid.					
(B)	In addition	to CTF	P, NADH and	l QH2 a	re also produ	aced in	citric acid	cycle.		
(C)	The acetyl g	group	of acetyl-Co.	A is rel	eased in the	form o	f CO ₂ whe	en it enter	rs citric acid	l
	cycle.									
(D)	The product	t of the	e last step, ox	aloace	ate, is also th	he reac	tant of the	first step		
(E)	It occurs in	mitocl	nondrial mat	rix.						
75. Which	of the follow	ving st	atements abo	out ami	no acids is (CORR	ECT? (1) 1	Methionii	ne is sulfur-	
contain	ning amino ac	eids.	② The UV	absorba	nce of pheny	ylalani	ne at 280 n	nm is low	er than that	
of tyro	sine. 3 Dis	ulfide	bond can be	reduced	d by performi	ic acid.	4 The s	side chain	of histidine	
is an ii	midazole ring	. ⑤	The pI value	of argi	nine is lower	than tl	nat of lysir	ne.		
(A)	(1,2,3)	(B)	(1), (3), (4)	(C)	2,3,4	(D)	(1,2,4)	(E)	2,3,5	

76. Which of the following enzymes are aspartate protease? ① Subtilisin; ② Cathepsin D; ③ HIV-protease; ④ Thrombin; ⑤ Pepsin	
(A) $1,2,3$ (B) $1,2,4$ (C) $1,2,5$ (D) $2,3,4$ (E) $2,3,5$)
77. Which of the following statements for the structure of proteins are CORRECT ? ① A borbetween amino acids is peptide bond. ② Disulfide bonds in proteins are formed by serin ③ The amino acid sequence is the primary structure of proteins. ④ The coil-coiled motif is the tertiary structure of proteins. ⑤ The quaternary structure of proteins contains two or morpolypeptide chains.	ie. he
(A) \bigcirc , \bigcirc , \bigcirc (B) \bigcirc , \bigcirc , \bigcirc (C) \bigcirc , \bigcirc , \bigcirc (D) \bigcirc , \bigcirc , \bigcirc (E) \bigcirc , \bigcirc , \bigcirc)
 78. In order to infect cells, the hemagglutinin of the influenza virus binds with in the central surface glycoproteins or glycolipids. (A) sialic acid (B) gluconic acid (C) N-acetylmuramic acid (D) uronic acid (E) muramic acid 	
79. In electron-transport chain, the transferring sequence of the electrons passing from NADH	to
oxygen is:	
(A) Complex I \rightarrow Complex IV \rightarrow Complex V	
(B) Complex I→Complex II→Complex III→cytochrome c→Complex IV	
(C) Complex $I \rightarrow Q \rightarrow Complex II \rightarrow Complex III \rightarrow cytochrome c \rightarrow Complex IV$	
(D) Complex I→Complex II →Complex IV	
(E) Complex $I \rightarrow Q \rightarrow Complex III \rightarrow cytochrome c \rightarrow Complex IV$	
80. Which of the following BEST explains the "wobble" hypothesis proposed by Francis Crick?	
(A) The genetic code is degenerate in that most amino acids have more than one codon.	
(B) The genetic code is ambiguous in that each codon can specify more than one amino aci	id
(C) The anticodon can pair with any part of the corresponding codon.	
(D) The 5'-base of the anticodon can make non Watson-Crick hydrogen bonds with sever	ra
different bases at the 3'-position of the codon.	
(E) Inosine can pair up with C, G, or U.	
81. Phospholipids show asymmetric distribution on membrane of erythrocytes. Which of the following phospholipids prefer to distribute on the outer leaflet of erythrocyte membrane?	he
① phosphatidylcholine; ② phosphatidylserine; ③ phosphatidylinositol;	
4 sphingomyelin; 5 phosphatidylethanolamine	
(A) \bigcirc , \bigcirc (B) \bigcirc , \bigcirc (C) \bigcirc , \bigcirc (D) \bigcirc , \bigcirc (E) \bigcirc , \bigcirc	

82.	by ① a	alian phosph	vator, f	ructose 2, 6-	bispho	sphate; ②	alloste	ric inhibitor	, ATP;	-
	(A)	steric activato				Thibitor, ADI $(1,2,5)$		1,3,5	etivator, (E)	①, ④, ⑤
83.		ding of protein								
		to misfolding							-	1 1
		utzfeldt-Jakol		•		•		-		
		ngtington's dis		-		_			-	
	(A)	(1,2,3)	(B)	(1),(2),(4)	(C)	2,3,5	(D)	3,4,5	(E)	(1,2,5)
84.	Which	of the follow	ing sta	tements abou	at the i	nhibition of	enzym	e activity is	FALSE	2?
	(A)	Transition s	tate an	alogs can be	used a	s competitiv	e inhib	itor.		
	(B)	Irreversible	inhibit	tion can be an	nalyze	d using Mich	naelis-N	Menten equa	tion.	
	(C)	Increasing s	ubstra	te concentrat	ion car	n counteract	the effe	ect of compe	etitive in	nhibitor.
	(D)	An uncomp	etitive	inhibition do	es not	affect the sle	ope of	the Linewea	ver-Bu	k plot.
	(E)	The irrevers		hibitor is co	valentl	y linked with	h the ca	atalytic resid	due at th	ne active site
85.	Which	of the following	ing enz	zymes are inv	olved	in the purine	salvag	e pathways?	① GM	P synthetase;
	② Ade	nine phospho	ribosy	l transferase;	3	Purine nucle	oside p	hosphorylas	se;	
	4 Hyp	oxanthine-gu	anine	phosphoribo	syltran	sferase; 5	Aden	ylosuccinate	lyase	
	(A)	1,2	(B)	2,3	(C)	3,4,5	(D)	2,4	(E)	2,3,4
86.	Which	of the follow	ing sta	tements for c	holest	erol are COI	RREC'	T? ① Chole	esterol is	s a precursor
	of lano	sterol. 2 C	holest	erol is a com	ponen	t of cell men	nbrane	in human er	ythrocy	te.
	3 Cho	olesterol is a p	recurs	or of bile aci	ds.	1 Cholester	ol is ter	pene-based	lipid.	
	⑤ Cho	olesterol reduc	ces the	transition te	mpera	ture of phosp	holipio	ds in cell me	mbrane) <u>.</u>
	(A)	1,2,3	(B)	1,3,5	(C)	1,2,4	(D)	2,3,4	(E)	2,4,5
87.	Which	of the follow	ing sta	tements is C	ORRI	ECT in DNA	repair	?		
	(A)	AlkB is invo	olved i	n base-excisi	on rep	air.				

(C) ABC excinuclease is involved in nucleotide-excision repair.

Dam methylase is involved in methyl-directed repair.

(B) AP endonuclease is involved in mismatch repair.

(D) DNA photolyase is involved in direct repair.

(E)

88. A peptide is digested by chymotrypsin, and the resulting peptides are shown as following: Gly-

ı-Phe; Leu-Lys-T	rp; Met-Arg-Ala-Tyr	The C-terminal	amino acid of the						
starting peptide (the one cleaved with chymotrypsin) is									
(B) Phe	(C) Trp	(D) Tyr	(E) Gly						
vings inhibit fatty	acid synthesis: (1) mal	lonyl CoA; (2) gl	ucagon; (3) citrate;						
acetyl-CoA carbo	xylase								
(B) $1,2,4$	(C) ①,③,④	(D) 2,3,4	(E) $1,2,3,4$						
	e one cleaved with (B) Phe vings inhibit fatty acetyl-CoA carbo	e one cleaved with chymotrypsin) is (B) Phe (C) Trp vings inhibit fatty acid synthesis: ① ma acetyl-CoA carboxylase	(B) Phe (C) Trp (D) Tyr vings inhibit fatty acid synthesis: ① malonyl CoA; ② gl acetyl-CoA carboxylase						

- 90. Which of the following statements about pentose phosphate pathway is **FALSE**?
 - (A) The major pathway is to produce five-carbon sugars.
 - (B) The major products are two molecules of NADPH and one molecule of ribulose-5-phosphate.
 - (C) Oxidation of glucose 6-phosphate to 6-phosphoglucono-δ-lactone is the first reaction.
 - (D) It provides ribose-5-phosphate for nucleotide biosynthesis.
 - (E) It occurs exclusively in the mitochondria.